729 research outputs found

    Noncollinear magnetic order in quasicrystals

    Get PDF
    Based on Monte-Carlo simulations, the stable magnetization configurations of an antiferromagnet on a quasiperiodic tiling are derived theoretically. The exchange coupling is assumed to decrease exponentially with the distance between magnetic moments. It is demonstrated that the superposition of geometric frustration with the quasiperiodic ordering leads to a three-dimensional noncollinear antiferromagnetic spin structure. The structure can be divided into several ordered interpenetrating magnetic supertilings of different energy and characteristic wave vector. The number and the symmetry of subtilings depend on the quasiperiodic ordering of atoms.Comment: RevTeX, 4 pages, 5 low-resolution color figures (due to size restrictions); to appear in Physical Review Letter

    Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit

    Get PDF
    The thickness dependence of the superconducting energy gap ΔLa\Delta_{\rm{La}} of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction at the surface and W/La interface, leading to a linear decrease of the critical temperature TcT_c as a function of the inverse film thickness. For thick, bulk-like films, ΔLa\Delta_{\rm{La}} and TcT_c are 40% larger as compared to literature values of dhcp La measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large TcT_c originates in the superior purity of the samples investigated here.Comment: 14 pages, 7 figure

    Evidence for Induced Magnetization in Superconductor-Ferromagnet Hetero-structures: a Scanning Tunnelling Spectroscopy Study

    Full text link
    We performed scanning tunneling spectroscopy of c-axis oriented YBCO films on top of which ferromagnetic SRO islands were grown epitaxially in-situ. When measured on the ferromagnetic islands, the density of states exhibits small gap-like features consistent with the expected short range penetration of the order parameter into the ferromagnet. However, anomalous split-gap structures are measured on the superconductor in the vicinity of ferromagnetic islands. This observation may provide evidence for the recently predicted induced magnetization in the superconductor side of a superconductor/ ferromagnet junction. The length scale of the effect inside the superconductor was found to be an order of magnitude larger than the superconducting coherence length. This is inconsistent with the theoretical prediction of a penetration depth of only a few superconducting coherence lengths. We discuss a possible origin for this discrepancy

    Magnetic properties of substitutional Mn in (110) GaAs surface and subsurface layers

    Full text link
    Motivated by recent STM experiments, we present a theoretical study of the electronic and magnetic properties of the Mn-induced acceptor level obtained by substituting a single Ga atom in the (110) surface layer of GaAs or in one of the atoms layers below the surface. We employ a kinetic-exchange tight-binding model in which the relaxation of the (110) surface is taken into account. The acceptor wave function is strongly anisotropic in space and its detailed features depend on the depth of the sublayer in which the Mn atom is located. The local-density-of-states (LDOS) on the (110) surface associated with the acceptor level is more sensitive to the direction of the Mn magnetic moment when the Mn atom is located further below the surface. We show that the total magnetic anisotropy energy of the system is due almost entirely to the dependence of the acceptor level energy on Mn spin orientation, and that this quantity is strongly dependent on the depth of the Mn atom.Comment: 14 pages, 13 figure

    Interplay between magnetic and spatial order in quasicrystals

    Get PDF
    The stable magnetization configurations of antiferromagnets on quasiperiodic tilings are investigated theoretically. The exchange coupling is assumed to decrease exponentially with the distance between magnetic moments. It is demonstrated that the combination of geometric frustration and the quasiperiodic order of atoms leads to complicated non-collinear ground states. The structure can be divided into subtilings of different energies. The symmetry of the subtilings depends on the quasiperiodic order of magnetic moments. The subtilings are spatially ordered. However, the magnetic ordering of the subtilings in general does not correspond to their spatial arrangements. While subtilings of low energy are magnetically ordered, those of high energy can be completely disordered due to local magnetic frustration
    • …
    corecore